If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-80=0
a = 3; b = 4; c = -80;
Δ = b2-4ac
Δ = 42-4·3·(-80)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{61}}{2*3}=\frac{-4-4\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{61}}{2*3}=\frac{-4+4\sqrt{61}}{6} $
| 4=h+3h | | 9x+2=6×+47 | | 15t-14t=16 | | 5=10i-9i | | 54-5y=19 | | 6+2+15=x | | -y+98=262 | | 1/4+7/11x=6/11 | | 24y=10 | | 248=26-x | | 2q+6q=8 | | 11s+10=120 | | -6p-5+7p=3 | | 7x=5x-40 | | 9x+4x-3x-5=25 | | 8p-4p=20 | | -4m+9=-49 | | -x+238=32 | | w/9=w | | 6x2-14x+8=0 | | 200+14.95x=3000 | | -6b+1=27 | | -8=x/4+12 | | 13k−12k=17 | | 4q+17=53 | | 48y=24 | | 2j-2=-2+2j | | 14.95x+200=3000 | | (3x+5)=(40-2x) | | 6+3w=-4+3w | | -5m-12=3 | | 3b+6=-12 |